Inorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms.
نویسندگان
چکیده
Part of the neurotoxic effects of inorganic mercury (Hg(2+)) and methylmercury (MeHg) was attributed to their interaction with voltage-activated calcium channels. Effects of mercury on T-type calcium channels are controversial. Therefore, we investigated effects of Hg(2+) and MeHg on neuronal Ca(v)3.1 (T-type) calcium channel stably expressed in the human embryonic kidney (HEK) 293 cell line. Hg(2+) acutely inhibited current through the Ca(v)3.1 calcium channel in concentrations 10 nM and higher with an IC(50) of 0.63 +/- 0.11 microM and a Hill coefficient of 0.73 +/- 0.08. Inhibition was accompanied by strong deceleration of current activation, inactivation, and deactivation. The current-voltage relation was broadened, and its peak was shifted to a more depolarized membrane potentials by 1 microM Hg(2+). MeHg in concentrations between 10 nM and 100 microM inhibited the current through the Ca(v)3.1 calcium channel with an IC(50) of 13.0 +/- 5.0 microM and a Hill coefficient of 0.47 +/- 0.09. Low concentration of MeHg (10 pM to 1 nM) had both positive and negative effects on the current amplitude. Micromolar concentrations of MeHg reduced the speed of current activation and accelerated current inactivation and deactivation. The current-voltage relation was not affected. Up to 72 h of exposure to 10 nM MeHg had no significant effect on current amplitude, whereas 72-h-long exposure to 1 nM MeHg increased significantly current density. Acute treatment with Hg(2+) or MeHg did not affect HEK 293 cell viability. In conclusion, interaction with the Ca(v)3.1 calcium channel may significantly contribute to neuronal symptoms of mercury poisoning during both acute poisoning and long-term environmental exposure.
منابع مشابه
Investigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)
Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...
متن کاملComparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells.
Expression cDNA clones of alpha1B-1 or alpha1E-3 subunits coding for human neuronal N-(Cav2.2) or R-subtype (Cav2.3) Ca2+ channels, respectively, was combined with alpha2-bdelta and beta3-a Ca2+ channel subunits, and transfected into human embryonic kidney cells for transient expression to determine whether specific types of neuronal voltage-sensitive Ca2+ channels are affected differentially b...
متن کاملEffects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293).
Methylmercury (MeHg) disrupts the function of native, high voltage-activated neuronal Ca(2+) channels in several types of cells. However, the effects of MeHg on isolated Ca(2+) channel phenotypes have not been examined. The aim of the present study was to examine the action of MeHg on recombinant, neuronal L-type voltage-sensitive Ca(2+) channels. Human embryonic kidney cells (HEK-293) were tra...
متن کاملEffects of Biebersteinia multifida hydro-ethanol extract on proliferation and apoptosis of human prostate cancer and human embryonic kidney cells
Objective: Biebersteinia (Geraniaceae) has a history of use in traditional medicine in some countries including Iran. In the present study, cytotoxic and apoptogenic properties of hydro-ethanol extract of B. multifidi was investigated on human prostate cancer cell lines (PC3 and DU 145) and human embryonic kidney 293 (HEK293) cells. Materials and Methods: Cells were cultured in RPMI-1640 medium...
متن کاملCalcium channel c 6 subunits are unique modulators of low voltage - activated ( Cav 3 . 1 ) calcium current Jared
The calcium channel gamma (c) subunit family consists of eight members whose functions include modulation of high voltage-activated (HVA) calcium currents in skeletal muscle and neurons, and regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propanoic acid (AMPA) receptor targeting. Cardiac myocytes express at least three c subunits, c4, c6 and c7, whose function(s) in the heart are unknow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 317 1 شماره
صفحات -
تاریخ انتشار 2006